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In this paper we introduce a high-order discontinuous Galerkin method for two-
dimensional incompressible flow in the vorticity stream-function formulation. The
momentum equation is treated explicitly, utilizing the efficiency of the discontinuous
Galerkin method. The stream function is obtained by a standard Poisson solver using
continuous finite elements. There is a natural matching between these two finite el-
ement spaces, since the normal component of the velocity fielthisnuousacross
element boundaries. This allows for a correct upwinding gluing in the discontinuous
Galerkin framework, while still maintaining total energy conservation with no nu-
merical dissipation and total enstrophy stability. The method is efficient for inviscid
or high Reynolds number flows. Optimal error estimates are proved and verified by
numerical experiments. © 2000 Academic Press
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1. INTRODUCTION AND THE SETUP OF THE SCHEME

We are interested in solving the following 2D time-dependent incompressible EL
equations in vorticity stream-function formulation;

wt+V-Uw)=0
AY =w, u=Viy, (1.2)
u-n = given ona<2,
! Research supported by NSF Grant DMS-9805621.
2Research supported by ARO Grant DAAG55-97-1-0318, NSF Grants DMS-9804985, ECS-9906606,

INT-9601084, NASA Langley Grant NAG-1-2070 and Contract NAS1-97046 while this author was in residel
at ICASE, NASA Langley Research Center, Hampton, VA 23681-2199, and AFOSR Grant F49620-99-1-00

577

0021-9991/00 $35.00
Copyright(© 2000 by Academic Press
All rights of reproduction in any form reserved.



578 LIU AND SHU

whereV+ = (—0dy, dx). Notice that the boundary condition, plus the fact thain = v

at’
recovers)/ on the boundary (up to a constant) in a simple connected domain

Vloa = Y. (1.2)

We are also interested in solving the Navier—Stokes equations with high Reynolds num
Re> 1:

1
ot + V- (Uw) = R—eAw

AY =w, u=Viy, (1.3)
u = given onag2.

The boundary condition is now (1.2) plus the non-slip type boundary condition:
— | =Upg. (1.4)

For simplicity, we only consider the no-flow, no-slip boundary conditigpps=0, u, , =0
and periodic boundary conditions.

We first emphasize that, for Euler equations (1.1) and high Reynolds numbgr {iRe
Navier—Stokes equations (1.3), it is advantageous to treat both the convective terms
the viscous terms explicitly. The methods discussed in this paper are stable under star
CFL conditions. Since the momentum equation (the first equation in (1.1) and (1.3)
treated explicitly in the discontinuous Galerkin framework, there is no global mass ma
toinvert, unlike conventional finite element methods. This makes the method highly effici
for parallelimplementation, see for example [3]. As any finite element method, our appro
has the flexibility for complicated geometry and boundary conditions. The method is aday
from the Runge—Kutta discontinuous Galerkin methods discussed by Coadtbairin a
series of papers [7-13, 20].

The main difficulties in solving incompressible flows are the incompressibility conditic
and boundary conditions. The incompressibility condition is global and is thus solved
the standard Poisson solver for the stream funafiarsing continuous finite elements. One
advantage of our approach is that there is no matching conditions needed for the two f
element spaces for the vorticidyand for the stream functiof. The incompressibility con-
dition, represented by the stream functipnis exactly satisfied pointwise and is naturally
matched with the convective terms in the momentum equation. The normal velociig
automaticallycontinuousalong any element boundary, allowing for correct upwinding fo
the convective terms and still maintaining a total energy conservation and total enstrc
stability.

There is an easy proof for stability, both in the total enstrophy and in the total enel
which does not depend on the regularity of the exact solutions. For smooth solutions ¢
estimates can be obtained.

We use the vorticity stream-function formulation of the Navier—Stokes equations. T
formulation with the local vorticity boundary condition has been revitalized by the rece
work of E and Liu [14, 15, 23]. The main idea is to use convectively stable time-stepp
procedure to overcome the cell Reynolds number constraint, explicit treatment of the
cous terms and the local vorticity boundary condition. This results in a decoupling of :
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computation of stream function and vorticity at every time step. This method is very effici
and accurate for moderate to high Reynolds number flows, as demonstrated in [14, 15

Our method, as it stands, can only compute 2D flows. In 3D, the normal velocifg no
longer continuous along an element boundary, hence making the method more complic
todesign andto analyze. Similar approaches for the stream-function vorticity formulatior
for the primitive variable formulation, suitable for 3D calculations, are under investigatic

We do not advocate our method for modest or low Reynolds number flows. In such reg
viscous terms should be treated implicitly for efficiency. This is a much more challeng
task in terms of space matching characterized by the &labtBrezzi—Ladyzenskaja con-
dition, projection type methods, and global vorticity boundary conditions; see, for exam
[4, 17-19, 25, 26, 28] etc. We remark that the only problem of our method for modes
low Reynolds number flows is the small time step dictated by the stability of the expli
time discretization. Of course, if the objective isresolvethe full viscous effect, hence a
small time step is justified for accuracy, then it is still adequate to use our method.

For convection-dominated flows, as we investigate in this paper, we mention the w
of Bell et al. [1] for second-order Godunov-type upwinding methods; see also Levy a
Tadmor [22] and E and Shu [16]. This is still an active field for research.

We now describe the setup of the scheme. We start with a triangul&tadfithe domairg2,
consisting of polygons of maximum size (diameterand the following two approximation
spaces

Vi ={v:ivlk € PYK), YK e T}, W, = VENCo(9), (1.5)
wherePK(K) is the set of all polynomials of degree at mksin the cellK .

For the Euler equations (1.1), the numerical method is defined as followsofiraVk
andyn € W}, such that

(donv)k — @ntn - Volk + D (Un-Nanv)e=0.  Yoe Vi, (16)
ecoK
—(Vyn - Vo) = (onp), Yo € Wi, 1.7)

with the velocity field obtained from the stream function by
Up = Vllﬁh. (1.8)

Here (-) is the usual integration over either the whole dom@ior a subdomain denoted
by a subscript; similarly for th&? norm|| - ||.

Notice that the normal velocity;, - n is continuous across any element boundaryut
both the solutiorw, and the test function are discontinuous there. We take the values c
the test function from within the eleme#t, denoted by ~. The solution at the edge is
taken as a single-valued flaxg, which can be either a central or an upwind-biased averac
For example, the central flux is defined by

— 1

on = 3(wp +op), (1.9)

wherew, is the value ofw, on the edges from outsideK, the complete upwind flux is
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defined by
- on if uy,-n>0,
wh = _ (1.10)
wp ifu, -n<O,
and the Lax—Friedrichs upwind biased flux is defined by
Up - Nop = 2[un - N(ef + wp) — e (e — oy, (1.12)

whereqa is the maximum ofuy, - n| either locally (local Lax—Friedrichs) or globally (global
Lax—Friedrichs).

We remark that, for general boundary conditions (1.2), the sp@ein (1.5) should
be modified to take the boundary value into consideration. Moreover, additional phys
vorticity boundary condition for any inlet should be given.

Navier—Stokes equations (1.3) can be handled in a similar way, with the additional visc
terms treated by the local discontinuous Galerkin technique in [13], and with a local vortic
boundary condition in [14]. The details are left to Section 3. Section 2 is devoted to
discussion of stability and error estimates for the Euler equations. Accuracy check
numerical examples are given in Section 4. Concluding remarks are given in Section &

2. STABILITY AND ERROR ESTIMATES FOR THE EULER EQUATIONS

For stability analysis, we take the test functios wy, in (1.6), obtaining

1 —~
Giolonl& = 2V (@fun)) + D (un - ndnop)e =0,
ecdK

where we have used the exact incompressibility condition satisfiad, bgr the second
term. Performing an integration by parts for the second term, we obtain

d1l L ~
aéllwhlli + Z <Uh . n(a)hwh — %(a)h )2)>e =0.

ecoK
Now, using the fact that
w =w— %[w], (0)? = 0? — ow],
where
6:%(a)++w_), [w] =0 —w™,
we obtain

d1l — 1> 1 .~
gialonlk + > (un - n(@nan — 3ef))e+ 5 D _(un - nlon] @h — @n)e =0.
ecdK ecdK

Notice that the second term is of opposite sign for adjacent elements sharing a com
edgee, hence it becomes zero after summing over all the elemén(issing the no-flow
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boundary condition on the physical boundary or periodic boundary conditions). The tt
term is the numerical dissipation: whes is taken as the central flux (1.9), the third termr
is exactly zero; for the upwind flux (1.10), the third term becomes a positive quantity

2 - nllone, 1)

ecoK

which is the total enstrophy dissipation. The effect of this is to control the size of the ju
across the element interface and essentially “gluing” the solution there. Other upwi
biased fluxes such as the Lax—Friedrichs flux (1.11) would produce a positive term sin
to that of the total enstrophy dissipation. For smooth flows these jumps are of the o
O(h¥) within the truncation error of the scheme. We thus obtain the enstrophy inequali

d
anwhu2 <0, (2.2)

which becomes an equality if the central flux (1.9) is used.
The stability for the velocity field is now straightforward: we tage= ¢y, in (1.7) to
obtain

(Virn - V) = —(@n¥n) < [¥nll llonll < CIIV YR llonll
by the Poincare inequality, which implies
Iunll = [IVYnll < Cllonll. (2.3)

Indeed, we can obtain a total energy conservation through the following arguments. Ta
v =1 in (1.6), we obtain

(ronn)k — (@nln - V¥nk + »_ (Un - N@pn)e = 0.
ecoK

Now the second term is zero sinag - V¢, = 0. The third term vanishes after summing
over all elements sincgy, is continuous. Finally, noticing that

o) = <21Vl = S L2

e T AL T Ll

we obtain the conservation of energy
d
—|lupll =0 2.4
Olt|| hll (2.4)

even for a upwind flux. Thus therem® numerical dissipatiofor the energy.

We remark that the stability proof above for the total energy and total enstrophy does
need any hypotheses on the regularity of the solution or the mesh.

We now turn to the error estimates. For these we would need to assume that the sol
is regular { € H*+1 for k > 1) and the mesh is quasi-uniform. Conceptionally, since th
is a finite element method, the exact solution of the PDE satisfies the scheme exactl
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usual, we define the two projection operatd?ss the standardl ? projection into the space
V¥, andIT is the standard projection intd(,:

(V@ — ) - Vo) =0, V¥ € W,
Denote the error functions by
£ =w— wh, =Y —yn
and their projections by
enh = Pe = Pw — wh, onh = I8 = Ty — Yy,
We first obtain a control ofy, in terms ofe,
(V8- Vo) = —(ep), Vo e W,

from the scheme (1.7) and the fact that the exact solution also satisfies (1.7). Now, ta
@ = &n, We obtain

(Vén - Vén) = (V8- Vén) = —(edn),
which gives
Vénll < Cllell.
This leads to a bound for the velocity field

u—unll = IV =yl = IV = TIY) | + IVITY — )|
= IV —y)| + Clle]. (2.5)

Since both the numerical solution and the exact solution satisfy (1.6),
(dev)k — ((@U — wptn) - Vo) + > (U No — Uy -Nop)v )e=0, Vv e VK.
ecdK
(2.6)

Takev = ¢n. The second term becomes

((wU —wnUp) - Ven)k = (@(U — Up) - Vep)k + (eUn - VE)k — (eUp - V(w — Pw))k.
2.7)

Noticing thatu — uy, is exactly divergence free, we may perform integration by parts to tf
first term on the right side of (2.7) to obtain

(w(U—Un) - Ven)k = —(en(U—Up) - Vo)k + Z ((U—Un) - Nwey e.
ecdK
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The second term ontheright side of (2.7) is a complete derivative and hence can be integ
to give a pure boundary term

1
(eun - Ve)k = 5 eezaijh nE)?)e

Plugging all these into (2.6) with = ¢, and collecting boundary terms, we obtain

(dtenen)k + (en(U — Un) - Vo)k + (eUn - V(o — Po))k + »_ le=0

ecoK

where the boundary terms

le = —((U—Up) - Nwep, Ye — 3{(Un - N(e7)?)e + ((U - Nw — Un - NDR)ER Ve
= (Un - N (8 — 3%,

= <uh . n(ée’ — %(87)2»8 — (Un - N&(@ — (Pw)7))e.

Using the stability analysis in (2.2), we are left with

d1l
aé”gh”z = ;{_@h(“ — Un) - Vo)k — (eUn - V(o — Pw))k

+ ) (un - né(w— (Pa))))e}. (2.8)
ecdK

Assuming for the moment
lunllee = C, (2.9)

we can first estimate the boundary term, using the fact that the mesh is quasi-uniform:

> (un-nd@— (Pw)))e < Y Y ClIPo]llellle

K eedK K eedK

< lel® + %Z > IPa]lZ.

K eedK

Using the above inequality together with (2.5) and (2.8), we now obtain (with the regulal
assumptiony € Hk+1)

d 1
—llenll? < C<||sh||2 HIVW =TI+ o = Pollfs + =3 > ||[Pw]||§).

dt K eedK

Here we understand the norms as a summation of the same norm oK ellding the
standard interpolation theory [6], we obtain

d
gellenll® = Cllen® + Ch%,
which yields

llenll < Ch¥.
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Together with (2.5), we have
lu—up| + lo — wnll < Ch¥. (2.10)
Using an inverse inequality, we have
Iu— Unlloe < CH*;

with the assumptioR > 1, this justifies the priori assumption (2.9).

The estimate (2.10) is optimal in terms of the spw(‘ﬁv which is important since the
main cost for the scheme is in the Poisson solveNgjh. The vorticity estimate in (2.10)
is, however, suboptimal with respect to the spﬂ#elf we useW('{ﬁl instead for the stream
function and use the upwind flux (1.10), then a more detailed analysis will produce
orderO(hk+1/2) for the error inw; see [13, 21] for details. However, we do not recommen
this choice in practice, as the increase of half-order accuracy is obtained with the p
of one degree higher polynomials in the most expensive part of the algorithm, nan
the Poisson solver. In our numerical experiments in Section 5, we observe that clos
(k+ Lyth order of accuracy is generally achieved whkémndegree polynomials are used in
both the discontinuous space forand the continuous space fgr, both for uniform and
for non-uniform meshes.

3. THE SCHEME FOR THE NAVIER-STOKES EQUATIONS

For the Navier—Stokes equations (1.3), there are two additional ingredients that rec
our attention:

1. The viscous terms cannot be directly implemented in the discontinuousépace
Instead, the stress tensor is first obtained locally using the same discontinuous Gals
framework.

2. Vorticity boundary values are not known physically. We obtain vorticity boundal
conditions locally from the stream function using the kinematic relation in (1.3).

We use the same finite element spa\i#,sandw(‘;h defined in (1.5) for the vorticity and
stream function, respectively. Denote klgh the Subspace o¥ with zero value at the
boundary. LetV be the finite element space extended frWéjh with general non-zero
values at the boundary. The numerical method now becomes

(dtwnv)k — (whln - VV)k + Z (Un - N@RY e
ecoK

=—(onh - Vu)k + Z (oh - NV )e, Yv € Voifh. (3.1
ecoK

Notice that the test function is now M{h, (see [23]), and the stress tensare (V,¥)? is
obtained from the vorticityo, by the same discontinuous Galerkin framework:

Re(onVik = —{(wnV - V)k + Z (V™ - N, YV € (V,'f)z. (3.2)
ecdK



HIGH-ORDER DISCONTINUOUS GALERKIN METHOD 585

We remark that (3.2) gives a local solution for the stress temgagiven the vorticitywp;
neither a global inversion nor a global storage is needed. The ffipaew, can be chosen
as central averages

Oh=13(0y +o7), @n =30, +op) (3.3)

or better still, as alternate one-sided fluxes, namely, at eacheadlile an arbitrarily fixed
orientation, one ofy, andwy, is taken as the left value and the other taken as the right valt
It can be verified that, fok =0 and a rectangular triangulation, the central fluxes (3.:
produce a wide stencil central approximation to the second derivatives (i andw;
are used for approximatingyy), while the alternate one-sided fluxes produce a compa
stencil central approximationy(_1, w; andwj1 are used for approximatingyy). Also,
numerical and theoretical evidence show that the alternate one-sided fluxes produce
accurate results [13]. In this paper we use only the alternate one-sided fluxes for the vis
terms.

For periodic boundary conditions, the scheme is now well defined. For the non-peric
case, we advocate using the approach in [23]. Although the basic idea in computing
vorticity boundary condition is similar to that of the standard finite element method in [2
there is some difference due to the fact that the approximation space for the vorticity in
discontinuous Galerkin method is large than that in a continuous finite element method
outline the detailed steps here for completeness.

Since (3.1) is treated explicitly and the local discontinuous Galerkin method iswfséd,
in the interior elements can be directly computed. However, for the boundary elements
need to compute ™ in three steps.

First, for all test functions € Véfh, we can compute the inner produaf ™ v) directly
from (3.1) thanks to the explicit time stepping.

Second, sinckV§|, is a subspace of§;,, from (3.1), the inner productgyfi ™ v)k for all
v E W('ih has already been computed. This is sufficient for obtaining the stream funct
Y+ from

—(Vnt Vo) = (o). Vo € W, (34)
with the velocity field obtained from the stream function by
uptt = vyt (3.5)
Finally, we are able to compute the vorticib} ™ at boundary elements directly from
<wﬂ+l(p> _ _<Vlmr11+1 . Vg0>

for all the test functiong € th thanks to the fact thaﬁﬁ*l has already been computed.
For problems with periodic boundary conditions, the formulation above admits the f
lowing stability results,

d
anwhnz + 2|lon| < 0, (3.6)
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which in turn implies stability for the velocity field (2.3). The proof is similar to the Eule
case; see [13] for the details. With the vorticity boundary condition mentioned above,
are unable to obtain a stability estimate. However, this type of vorticity boundary treatm
for conventional finite difference and finite elements is stable; see [15, 23]. Without s
a stability estimate, there is an issue about the uniqueness of the solution to the methi
lines discretization with the boundary condition treatment mentioned above. However,
full discretized version works well in the numerical experiments; see Example 1 of the n
section.

4. ACCURACY CHECK AND NUMERICAL EXAMPLES

We implement our method on triangulations based on rectangles. WPerGX result is
referred to it is obtained witP¥ elements for the vorticity andQX elements for the stream
function v, whereQX refers to the space of tensor products of 1D polynomials of degr
up tok. We remark that some of the theoretical results in previous sections do not apply
these choices of mesh and spaces. For exan@fle@lements should also be used for the
vorticity w for the exact energy conservation (2.4) to hold; however, to save cost W use
elements for the vorticity instead. Energy stability (2.3) and enstrophy stability (2.2) stil
hold in this case. We have used both the upwind flux (1.10) and the (global) Lax—Friedri
flux (1.11) for the calculations; however, we will only show the results obtained with tl
Lax—Friedrichs flux to save space. The time discretization is by the third-order posit
Runge—Kutta methods in [27].

ExampLE 1. This example is used to check the accuracy of our schemes, both for
Euler equations (1.1) and for the Navier—Stokes equations (1.3) with T®, for both
the periodic and the Dirichlet boundary conditions, and with both a uniform mesh an
non-uniform mesh. The Dirichlet boundary conditions use the data taken from the e
solution. The non-uniform mesh is obtained by alternating betwe®m0and 11Ax for
the mesh sizes in thedirection; similarly for the mesh sizes in tlyairection. The initial
condition is taken as

(X, Y, 0) = —2sin(x) sin(y), (4.2)
which was used in [5]. The exact solution for this case is known:
(X, Y, 1) = —2sinXx) sin(y)e 2/Re, (4.2)

We use the domain [@r] x [0, 27] for the periodic case and [&] x [0, z] for the Dirich-

let case and compute the errorg at 2 for the periodic case and &t 1 for the Dirichlet
case. We list in Tables 5.1 (uniform mesh) and 5.2 (non-uniform meshl) thrend L o,
errors, at =2, measured at the center of the cells, for the periodic boundary conditio
Tables 5.3 (uniform mesh) and 5.4 (non-uniform mesh) contain the results with the Diricl
boundary conditions dt= 1. We remark that, because of the difference in the sizes of i
domains of the periodic and Dirichlet cases, the errors with the same number of cells al
different values, but the orders of accuracy are similar. We have also computed the erro
the relevant derivatives at the centers of the cells, which help in giving usltidlgrrors
throughout the domain. We will not show them to save space. To get an idea about the €
of the viscous terms on the time step restriction and CPU time, we point out tHat fQ°
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TABLE 5.1
Accuracy Test, Uniform Meshes, Periodic Boundary Conditions

Euler Navier—Stokes with Re 100
Mesh L* error order L error order L* error order L error order
PY/Q!
16 7.77E-03 — 1.80E-02 — 7.65E-03 — 1.82E-02 —

32 1.01E-03 2.94 2.46E-03 2.87 1.03E-03 2.89 2.55E-03 2.8
64 1.28E-04 2.99 3.14E-04 2.97 1.36E-04 2.92 3.44E-04 2.8¢
12¢& 1.60E-05 3.00 3.94E-05 2.99 1.80E-05 2.92 4.63E-05 2.8¢
PZ/QZ
16 6.26E-04 — 1.58E-03 — 2.06E-04 — 5.85E-04 —
32 5.52E-05 3.50 2.75E-04 2.52 1.37E-05 3.90 3.24E-05 4.17
642 4.82E-06 3.52 3.81E-05 2.85 2.40E-06 2.51 4.10E-06 2.9¢
128 4.04E-07 3.58 4.96E-06 2.94 4.05E-07 2.57 6.44E-07 2.67
P*/Q?
16 9.74E-05 — 2.31E-04 — 9.68E-05 — 2.33E-04 —
32 6.81E-06 3.84 1.67E-05 3.79 6.22E-06 3.96 1.50E-05 3.9¢
642 4.36E-07 3.96 1.05E-06 3.99 3.82E-07 4.02 9.25E-07 4.0z
128 2.71E-08 4.01 6.59E-08 3.99 2.33E-08 4.04 5.70E-08 4.0:

with a 16 mesh, the Navier—Stokes code takes about twice as many time steps and ¢
three times as much CPU time as the Euler code to reach the same physical time. We
also made several runs where the periodic and non-periodic cases have the same pt
domain, mesh, and physical time. The errors are very close, indicating that the boun
effect on accuracy is small.

TABLE 5.2
Accuracy Test, Non-uniform Meshes, Periodic Boundary Conditions

Euler Navier—Stokes with Re 100
Mesh L* error order L error order L* error order L error order
P/Q!
16 8.49E-03 — 2.85E-02 — 7.77E-03 — 2.80E-02 —

32 1.44E-03 2.56 5.56E-03 2.36 1.16E-03 2.75 5.45E-03 2.3¢
647 2.81E-04 2.36 1.13E-03 2.29 2.17E-04 2.42 1.03E-03 2.4(
128 5.90E-05 2.25 2.59E-04 2.13 4.13E-05 2.40 1.94E-04 2.41
PZ/QZ
16 7.88E-04 — 2.77E-03 — 3.37E-04 — 1.18E-03 —
32 7.82E-05 3.33 4.11E-04 2.75 1.78E-05 4.24 6.40E-05 4.2]
647 7.66E-06 3.35 5.15E-05 3.00 2.63E-06 2.76 6.97E-06 3.2(
12¢& 7.43E-07 3.37 6.11E-06 3.07 4.34E-07 2.60 1.00E-06 2.8(
Py/Q?
16 1.03E-04 — 3.26E-04 — 1.01E-04 — 3.24E-04 —
32 7.18E-06 3.84 2.60E-05 3.65 6.52E-06 3.96 2.14E-05 3.9
64 4.60E-07 3.96 1.77E-06 3.88 4.01E-07 4.02 1.28E-06 4.0¢
128 2.86E-08 4.01 1.09E-07 4.02 2.44E-08 4.03 7.70E-08 4.0¢
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TABLE 5.3
Accuracy Test, Uniform Meshes, Dirichlet Boundary Conditions

Euler Navier—Stokes with Re 100
Mesh L* error order L error order L* error order L error order
PL/Q!
16 5.92E-04 — 1.23E-03 — 5.75E-04 — 1.32E-03 —

32 8.19E-05 2.85 1.92E-04 2.68 7.52E-05 2.94 1.78E-04 2.8€
64 1.06E-05 2.94 5.35E-05 1.84 9.63E-06 2.96 3.76E-05 2.28
128 1.35E-06 2.98 1.42E-05 1.92 1.25E-06 2.94 8.06E-06 2.2z
PZ/ Q2
16 4.76E-05 — 2.57E-04 — 1.51E-05 —_ 4.05E-05 —
32 4.28E-06 3.47 3.57E-05 2.85 2.49E-06 2.60 6.09E-06 2.7
642 3.74E-07 3.52 4.65E-06 2.94 4.11E-07 2.60 9.42E-07 2.6¢
128 3.17E-08 3.56 5.92E-07 2.97 6.16E-08 2.74 1.34E-07 2.81
P2/Q?
162 6.80E-06 — 1.58E-05 — 6.34E-06 — 1.53E-05 —
32 4.22E-07 4.01 1.06E-06 3.90 3.90E-07 4.02 9.45E-07 4.02
642 2.66E-08 3.99 6.90E-08 3.94 2.38E-08 4.04 5.81E-08 4.02
128 1.66E-09 4.00 4.25E-09 4.02 1.46E-09 4.03 3.59E-09 4.0z

We can clearly see from these tables that clog& to1)th order of accuracy is generally
achieved whelkth degree polynomials are used in both the discontinuous spacediod
for the Poisson solver, both for the uniform and for the non-uniform meshes.

ExampLE 2. Thedouble shearlayer problem taken from[1]. We solve the Euler equat
(1.1) in the domain [027] x [0, 2] with a periodic boundary condition and an initial

TABLE 5.4
Accuracy Test, Non-uniform Meshes, Dirichlet Boundary Conditions

Euler Navier—Stokes with Re 100
Mesh L* error order L error order L* error order L error order
Pl/ Ql
16 1.12E-03 — 4.35E-03 — 9.93E-04 — 4.25E-03 —

32 2.44E-04 2.20 9.79E-04 2.15 1.95E-04 2.35 8.74E-04 2.2¢
64° 5.61E-05 2.12 2.39E-04 2.04 3.90E-05 2.33 1.75E-04 2.32
128 1.36E-05 2.04 6.29E-05 1.92 7.76E-06 2.33 3.54E-05 2.31
P?/Q?
16 7.54E-05 — 3.31E-04 — 1.98E-05 — 6.63E-05 —
32 8.15E-06 3.21 4.33E-05 2.93 2.61E-06 2.93 7.03E-06 3.24
642 8.46E-07 3.27 5.35E-06 3.02 4.35E-07 2.59 1.02E-06 2.7¢
128 8.31E-08 3.35 6.56E-07 3.03 6.52E-08 2.74 1.49E-07 2.7¢
P3/ QS
16 7.17E-06 — 2.49E-05 — 6.65E-06 — 2.18E-05 —
32 4.46E-07 4.01 1.66E-06 3.91 4.09E-07 4.02 1.31E-06 4.0¢
642 2.80E-08 3.99 1.04E-07 3.99 2.50E-08 4.03 7.86E-08 4.0¢
128 1.75E-09 4.00 6.89E-09 3.92 1.53E-09 4.02 4.77E-09 4.04
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condition

scosx) — seck((y —m/2/p)  y=~
, (4.3)

(X, Y,0) = { 1
8 cogx) + ;secﬁ((3n/2 —-y)/p) y>m

where we takep = /15 ands = 0.05.

The solution quickly develops into roll-ups with smaller and smaller scales, so on ¢
fixed grid the full resolution is lost eventually. We use fixed uniform meshes of &4
and 128x 128 rectangles and perform the calculation up t08. We plot the time his-
tory of the total energy (square of tHe? norm of velocityu) and the total enstrophy
(square of the_2 norm of vorticity ») in Fig. 5.1, as well as contours of the vorticityat
t=6in Fig. 5.2 and at =8 in Fig. 5.3 to show the resolution. We can see from Fig. 5.
that the numerical dissipation decreases roughly in the ordet p9*-64%, P1/Q-128&,
P2/Q%-64?, P3/Q3-64%, P2/Q?-12&, and P3/Q3-12&. We remark that due to the dis-
sipation from Runge—Kutta time discretization and the choice of finite element spa
the total energy in Fig. 5.1, left, decays rather than stays at a constant as proved in (
The decay rate of total energy or total enstrophy in Fig. 5.1 is an indication of the
tual resolution of the schemes for the given mesh. The higher-order methods have b
resolutions and in general the resolution is quite good judging from the contours. We
mark that when the numerical viscosity becomes too small with higher-order methc
since the schemes are linear, numerical oscillations are unavoidable when resolutic
sharp fronts is lost, leading to instability. This is common for all linear schemes. Ho
ever, the discontinuous Galerkin method we use here is able to get stable solution:
much sharper fronts with the same mesh than central type finite difference or finite eler
methods.

enstropy as a function of time
34.28

3 F Energy as a function of time z 82F
5 3427F E
g : — e B 80 S
G 3426F == I 2 TR T
E = - ~ ~ N
3425 F R o 73fF NG
3424 F Sl o S N
3423 F N F AN
3422 74 E N .
3421F 2k AN
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34.19F 0F N .
34.18 'E— P1,64° 68 | P N
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FIG.5.1. The time history of energy (square of the norm of the velocityu) and total enstrophy (square of
the L2 norm of vorticity ). P*/Q* with 64 mesh in solid lineP*/Q* with 128 mesh in dashed line??/Q?
with 64> mesh in dash—dot lind??/ Q? with 12& mesh in dotted lineP*/ Q3 with 642 mesh in long dashed line,
and P3/Q?® with 128 mesh in dash—dot—dot line.
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P1,64° mesh, 1=6 P1,128° mesh, t=6
30 equally spaced vorticity contours from -4.9 to 4.9 30 equally spaced vorticity contours from -4.9 t0 4.9

P2, 64° mesh, t=6 P2,128° mesh, 1=6
30 equally spaced vorticity contours from -4.9 to 4.9 30 equally spaced vorticity contows from -4.9 to 4.9

P3, 64” mesh, 1=6 P3,128° mesh, 1=6
30 equally spaced vorticity contours from -3.9 10 4.9 30 equally spaced vorticity contows from -4.9 to 4.9

X X

FIG.5.2. Contour of vorticityw att = 6. Thirty equally spaced contour lines betweea —4.9 andw =4.9.
Left: results with 64 mesh; right: results with 128nesh. Top:P'/Q?; middle: P2/ Q?, bottom:P3/ Q3.
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P1,64° mesh, t=8 P1,128° mesh, t=8
30 equally spaced vorticity contours from -4.9 10 4.9 30 equally spaced vorticity contours from -4.9 to 4.9

s (n% —
>\ \\fk@
4 \\\\

1 2 3 4 5 8
X
P2, 64" mesh, t=8 P2,128" mesh, t=8
30 equally spaced vorticity contours from -4.9 to 4.9 30 equally spaced vorticity contours from -4.9 to 4.9

P3, 64° mesh, t=8 P3,128” mesh, t=8
30 equally spaced vorticity contours from -4.9 t0 4.9 30 equally spaced vorticity contours from -4.9 to 4.9

FIG.5.3. Contour of vorticityw att = 8. Thirty equally spaced contour lines betwees —4.9 andw =4.9.
Left: results with 64 mesh; right: results with 128nesh. Top:P'/Q?; middle: P2/ Q?, bottom:P3/ Q3.
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P?, 256 mesh, =8, Re=70000/27, thin P’, 512* mesh, t=8, Re=20000/27, uftra thin
30 equally spaced vorticity contours from -15to 15 30 equally spaced vorticity contours from -15 to 15

X

FIG.5.4. Contour of vorticityw att = 8. Thirty equally spaced contour lines betwees —15 andw = 15.
Left: results of the thin shear layer = /50, Re=70,000/2, P?/Q? method with a 256mesh; right: results
of the ultra thin shear layep, = /100, Re= 20,000/2r, P*/ Q! method with a 512mesh.

In [2], shear layers are distinguished between “thick” and “thin” ones, with the latt
producing spurious vortices. The result above corresponds to the “thick” shear laye
[2]. We show in Fig. 5.4, left, a “thin” shear layer case as defined in [2], corresponding
o = /50 with a Reynolds number Re70,000/2r, simulated with a uniform rectangular
mesh of 256« 256 cells withP?/Q? method at = 8. Notice that this is at a much higher
Reynolds number than that used in [2], where the Reynolds number #s2R@0/ 2
and a second-order Godunov upwind projection method with>2866 points produces
spurious non-physical vortices. We also compute a ultrathin shear layepwith/100
with Reynolds number Re 20,000/2x. The simulation result with a uniform rectangular
mesh of 512 512 cells withP'/Q! method att =8 is shown in Fig. 5.4, right. More
extensive numerical resolution study for this example can be found in [24], where
explore thoroughly the resolution both for the “thick” and for the “thin” shear layers. |
[24] we also plot the time history for the energy and enstrophy during a mesh refinen
to show that the physical viscosity is dominating the numerics at such high Reync
numbers, according to the decay of energy and enstrophy. This indicates that the bu
numerical viscosity of the methods is very small. We refer the reader to [24] for details. |
a comparison with nonlinear ENO schemes, we refer to [16].

ExamMPLE 3. The vortex patch problem. We solve the Euler equation (1.1),i24D x
[0, 2] with the initial condition

3

b4 3 T T .
-1, =X=%, z2=¥Y=7;
(X, y,00 =41, Z<x<¥ T<y< (4.4)
0, otherwise

and periodic boundary conditions. The contour plots of vortieityvith 30 equally spaced
contour lines betwee = —1.1 andw = 1.1, are given in Fig. 5.5 for=>5 and in Fig. 5.6
for t =10. We can see that the scheme gives stable results for all runs, and higher-c
schemes give better resolutions for vorticity.
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Vorticity at t=5, P1, 64° mesh Vorticity at t=5, P1, 128° mesh
30 equally spaced contours from-1.1 to 1.1 30 equally spaced contours from -1.1 to 1.1
> = F

Vorticity at t=5, P2, 64° mesh Vorticity at t=5, P2, 128% mesh
30 equally spaced contours from -1.1 to 1.1 30 equally spaced contours from -1.1 to 1.1
> > F

1 2 3 4 5 6 1 2 3 4 5 6
X X
Vorticity at t=5, P3, 64° mesh Vorticity at t=5, P3, 128° mesh
30 equally spaced contours from -1.1to 1.1 30 equally spaced contours from -1.1 to 1.1
> o F
6 6k

FIG.5.5. Contour of vorticityw att = 5. Thirty equally spaced contour lines betweesa —1.1 andw =1.1.
Left: results with 64 mesh; right: results with 128nesh. Top:P'/Q*; middle: P2/ Q?, bottom:P3/ Q3.
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Vorticity at =10, P1, 64°> mesh Vorticity at t=10, P1, 128 mesh
30 equally spaced contours from-1.1to 1.1 30 equally spaced contours from -1.1 to 1.1
> P =

Vorticity at t=10, P2, 64> mesh Vorticity at t=10, P2, 128> mesh
30 equally spaced contours from-1.1 to 1.1 30 equally spaced contours from -1.1 to 1.1
=~ F

Vorticity at t=10, P3, 64° mesh Vorticity att=10, P3, 128% mesh
30 equally spaced contours from -1.1 to 1.1 30 equally spaced contours from -1.1 to 1.1
> > F

|

T
L
2

FIG.5.6. Contour of vorticityw att = 10. Thirty equally spaced contour lines betwees —1.1 andw =1.1.
Left: results with 64 mesh; right: results with 128nesh. Top:P'/Q?; middle: P2/Q?, bottom:P3/ Q3.
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5. CONCLUDING REMARKS

We have developed a high order discontinuous Galerkin method for the two-dimensi

incompressible Euler and Navier—Stokes equations in the vorticity stream-function fort
lation, coupled with a standard continuous finite element solution of the Poisson eque

fo

r the stream function. A natural matching between the two finite element spaces all

us to obtain total energy conservation and total enstrophy stability. Numerical example:
shown to demonstrate the accuracy and resolution of the methods.
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