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In this paper we introduce a high-order discontinuous Galerkin method for two-
dimensional incompressible flow in the vorticity stream-function formulation. The
momentum equation is treated explicitly, utilizing the efficiency of the discontinuous
Galerkin method. The stream function is obtained by a standard Poisson solver using
continuous finite elements. There is a natural matching between these two finite el-
ement spaces, since the normal component of the velocity field iscontinuousacross
element boundaries. This allows for a correct upwinding gluing in the discontinuous
Galerkin framework, while still maintaining total energy conservation with no nu-
merical dissipation and total enstrophy stability. The method is efficient for inviscid
or high Reynolds number flows. Optimal error estimates are proved and verified by
numerical experiments. c© 2000 Academic Press
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1. INTRODUCTION AND THE SETUP OF THE SCHEME

We are interested in solving the following 2D time-dependent incompressible Euler
equations in vorticity stream-function formulation;

ωt +∇ · (uω) = 0

1ψ = ω, u = ∇⊥ψ, (1.1)

u · n = given on∂Ä,
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where∇⊥ = (−∂y, ∂x). Notice that the boundary condition, plus the fact thatu · n= ∂ψ

∂τ
,

recoversψ on the boundary (up to a constant) in a simple connected domain

ψ |∂Ä = ψb. (1.2)

We are also interested in solving the Navier–Stokes equations with high Reynolds numbers
ReÀ 1:

ωt +∇ · (uω) = 1

Re
1ω

1ψ = ω, u = ∇⊥ψ, (1.3)

u = given on∂Ä.

The boundary condition is now (1.2) plus the non-slip type boundary condition:

∂ψ

∂n

∣∣∣∣
∂Ä

= ub,τ . (1.4)

For simplicity, we only consider the no-flow, no-slip boundary conditionsψb= 0, ub,τ = 0
and periodic boundary conditions.

We first emphasize that, for Euler equations (1.1) and high Reynolds number (ReÀ 1)
Navier–Stokes equations (1.3), it is advantageous to treat both the convective terms and
the viscous terms explicitly. The methods discussed in this paper are stable under standard
CFL conditions. Since the momentum equation (the first equation in (1.1) and (1.3)) is
treated explicitly in the discontinuous Galerkin framework, there is no global mass matrix
to invert, unlike conventional finite element methods. This makes the method highly efficient
for parallel implementation, see for example [3]. As any finite element method, our approach
has the flexibility for complicated geometry and boundary conditions. The method is adapted
from the Runge–Kutta discontinuous Galerkin methods discussed by Cockburnet al. in a
series of papers [7–13, 20].

The main difficulties in solving incompressible flows are the incompressibility condition
and boundary conditions. The incompressibility condition is global and is thus solved by
the standard Poisson solver for the stream functionψ using continuous finite elements. One
advantage of our approach is that there is no matching conditions needed for the two finite
element spaces for the vorticityω and for the stream functionψ . The incompressibility con-
dition, represented by the stream functionψ , is exactly satisfied pointwise and is naturally
matched with the convective terms in the momentum equation. The normal velocityu · n is
automaticallycontinuousalong any element boundary, allowing for correct upwinding for
the convective terms and still maintaining a total energy conservation and total enstrophy
stability.

There is an easy proof for stability, both in the total enstrophy and in the total energy,
which does not depend on the regularity of the exact solutions. For smooth solutions error
estimates can be obtained.

We use the vorticity stream-function formulation of the Navier–Stokes equations. This
formulation with the local vorticity boundary condition has been revitalized by the recent
work of E and Liu [14, 15, 23]. The main idea is to use convectively stable time-stepping
procedure to overcome the cell Reynolds number constraint, explicit treatment of the vis-
cous terms and the local vorticity boundary condition. This results in a decoupling of the
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computation of stream function and vorticity at every time step. This method is very efficient
and accurate for moderate to high Reynolds number flows, as demonstrated in [14, 15, 23].

Our method, as it stands, can only compute 2D flows. In 3D, the normal velocityu·n is no
longer continuous along an element boundary, hence making the method more complicated
to design and to analyze. Similar approaches for the stream-function vorticity formulation, or
for the primitive variable formulation, suitable for 3D calculations, are under investigation.

We do not advocate our method for modest or low Reynolds number flows. In such regime
viscous terms should be treated implicitly for efficiency. This is a much more challenging
task in terms of space matching characterized by the Babu˘ska–Brezzi–Ladyzenskaja con-
dition, projection type methods, and global vorticity boundary conditions; see, for example
[4, 17–19, 25, 26, 28] etc. We remark that the only problem of our method for modest or
low Reynolds number flows is the small time step dictated by the stability of the explicit
time discretization. Of course, if the objective is toresolvethe full viscous effect, hence a
small time step is justified for accuracy, then it is still adequate to use our method.

For convection-dominated flows, as we investigate in this paper, we mention the work
of Bell et al. [1] for second-order Godunov-type upwinding methods; see also Levy and
Tadmor [22] and E and Shu [16]. This is still an active field for research.

We now describe the setup of the scheme. We start with a triangulationTh of the domainÄ,
consisting of polygons of maximum size (diameter)h, and the following two approximation
spaces

Vk
h = {v : v|K ∈ Pk(K ), ∀K ∈ Th}, Wk

0,h = Vk
h ∩ C0(Ä), (1.5)

wherePk(K ) is the set of all polynomials of degree at mostk on the cellK .
For the Euler equations (1.1), the numerical method is defined as follows: findωh ∈ Vk

h

andψh ∈ Wk
0,h, such that

〈∂tωhv〉K − 〈ωhuh · ∇v〉K +
∑
e∈∂K

〈uh · nω̂hv
−〉e = 0, ∀v ∈ Vk

h , (1.6)

−〈∇ψh · ∇ϕ〉 = 〈ωhϕ〉, ∀ϕ ∈ Wk
0,h, (1.7)

with the velocity field obtained from the stream function by

uh = ∇⊥ψh. (1.8)

Here〈·〉 is the usual integration over either the whole domainÄ or a subdomain denoted
by a subscript; similarly for theL2 norm‖ · ‖.

Notice that the normal velocityuh · n is continuous across any element boundarye, but
both the solutionωh and the test functionv are discontinuous there. We take the values of
the test function from within the elementK , denoted byv−. The solution at the edge is
taken as a single-valued flux̂ωh, which can be either a central or an upwind-biased average.
For example, the central flux is defined by

ω̂h = 1
2(ω
+
h + ω−h ), (1.9)

whereω+h is the value ofωh on the edgee from outsideK , the complete upwind flux is
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defined by

ω̂h =
{
ω−h if uh · n ≥ 0,

ω+h if uh · n < 0,
(1.10)

and the Lax–Friedrichs upwind biased flux is defined by

uh · nω̂h = 1
2[uh · n(ω+h + ω−h )− α(ω+h − ω−h )], (1.11)

whereα is the maximum of|uh · n| either locally (local Lax–Friedrichs) or globally (global
Lax–Friedrichs).

We remark that, for general boundary conditions (1.2), the spaceWk
0,h in (1.5) should

be modified to take the boundary value into consideration. Moreover, additional physical
vorticity boundary condition for any inlet should be given.

Navier–Stokes equations (1.3) can be handled in a similar way, with the additional viscous
terms treated by the local discontinuous Galerkin technique in [13], and with a local vorticity
boundary condition in [14]. The details are left to Section 3. Section 2 is devoted to the
discussion of stability and error estimates for the Euler equations. Accuracy check and
numerical examples are given in Section 4. Concluding remarks are given in Section 5.

2. STABILITY AND ERROR ESTIMATES FOR THE EULER EQUATIONS

For stability analysis, we take the test functionv=ωh in (1.6), obtaining

d

dt

1

2
‖ωh‖2K − 1

2

〈∇ · (ω2
huh
)〉

K
+
∑
e∈∂K

〈uh · nω̂hω
−
h 〉e = 0,

where we have used the exact incompressibility condition satisfied byuh for the second
term. Performing an integration by parts for the second term, we obtain

d

dt

1

2
‖ωh‖2K +

∑
e∈∂K

〈
uh · n

(
ω̂hω

−
h − 1

2(ω
−
h )

2
)〉

e
= 0.

Now, using the fact that

ω− = ω − 1
2[ω], (ω−)2 = ω2− ω[ω],

where

ω = 1
2(ω
+ + ω−), [ω] = ω+ − ω−,

we obtain

d

dt

1

2
‖ωh‖2K +

∑
e∈∂K

〈
uh · n

(
ω̂hωh − 1

2ω
2
h

)〉
e
+ 1

2

∑
e∈∂K

〈uh · n[ωh](ωh − ω̂h)〉e = 0.

Notice that the second term is of opposite sign for adjacent elements sharing a common
edgee, hence it becomes zero after summing over all the elementsK (using the no-flow
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boundary condition on the physical boundary or periodic boundary conditions). The third
term is the numerical dissipation: when̂ωh is taken as the central flux (1.9), the third term
is exactly zero; for the upwind flux (1.10), the third term becomes a positive quantity

1

4

∑
e∈∂K

〈|uh · n|[ωh]2〉e, (2.1)

which is the total enstrophy dissipation. The effect of this is to control the size of the jump
across the element interface and essentially “gluing” the solution there. Other upwind-
biased fluxes such as the Lax–Friedrichs flux (1.11) would produce a positive term similar
to that of the total enstrophy dissipation. For smooth flows these jumps are of the order
O(hk) within the truncation error of the scheme. We thus obtain the enstrophy inequality

d

dt
‖ωh‖2 ≤ 0, (2.2)

which becomes an equality if the central flux (1.9) is used.
The stability for the velocity field is now straightforward: we takeϕ=ψh in (1.7) to

obtain

〈∇ψh · ∇ψh〉 = −〈ωhψh〉 ≤ ‖ψh‖ ‖ωh‖ ≤ C‖∇ψh‖ ‖ωh‖

by the Poincare inequality, which implies

‖uh‖ = ‖∇ψh‖ ≤ C‖ωh‖. (2.3)

Indeed, we can obtain a total energy conservation through the following arguments. Taking
v=ψh in (1.6), we obtain

〈∂tωhψh〉K − 〈ωhuh · ∇ψh〉K +
∑
e∈∂K

〈uh · nω̂hψh〉e = 0.

Now the second term is zero sinceuh · ∇ψh= 0. The third term vanishes after summing
over all elements sinceψh is continuous. Finally, noticing that

−〈∂tωhψh〉 = d

dt

1

2
‖∇ψh‖2 = d

dt

1

2
‖uh‖2,

we obtain the conservation of energy

d

dt
‖uh‖ = 0 (2.4)

even for a upwind flux. Thus there isno numerical dissipationfor the energy.
We remark that the stability proof above for the total energy and total enstrophy does not

need any hypotheses on the regularity of the solution or the mesh.
We now turn to the error estimates. For these we would need to assume that the solution

is regular (ω∈ Hk+1 for k> 1) and the mesh is quasi-uniform. Conceptionally, since this
is a finite element method, the exact solution of the PDE satisfies the scheme exactly. As
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usual, we define the two projection operators:P is the standardL2 projection into the space
Vk

h ; and5 is the standard projection intoWk
0,h:

〈∇(ψ −5ψ) · ∇ϕ〉 = 0, ∀ϕ ∈ Wk
0,h.

Denote the error functions by

ε = ω − ωh, δ = ψ −ψh

and their projections by

εh = Pε = Pω − ωh, δh = 5δ = 5ψ − ψh.

We first obtain a control ofδh in terms ofε,

〈∇δ · ∇ϕ〉 = −〈εϕ〉, ∀ϕ ∈ Wk
0,h

from the scheme (1.7) and the fact that the exact solution also satisfies (1.7). Now, taking
ϕ= δh, we obtain

〈∇δh · ∇δh〉 = 〈∇δ · ∇δh〉 = −〈εδh〉,

which gives

‖∇δh‖ ≤ C‖ε‖.

This leads to a bound for the velocity field

‖u− uh‖ = ‖∇(ψ − ψh)‖ ≤ ‖∇(ψ −5ψ)‖ + ‖∇(5ψ − ψh)‖
≤ ‖∇(ψ −5ψ)‖ + C‖ε‖. (2.5)

Since both the numerical solution and the exact solution satisfy (1.6),

〈∂tεv〉K −〈(ωu− ωhuh) · ∇v〉K +
∑
e∈∂K

〈(u · nω − uh · nω̂h)v
−〉e = 0, ∀v ∈ Vk

h .

(2.6)

Takev= εh. The second term becomes

〈(ωu−ωhuh) · ∇εh〉K =〈ω(u− uh) · ∇εh〉K + 〈εuh · ∇ε〉K − 〈εuh · ∇(ω − Pω)〉K .
(2.7)

Noticing thatu− uh is exactly divergence free, we may perform integration by parts to the
first term on the right side of (2.7) to obtain

〈ω(u− uh) · ∇εh〉K = −〈εh(u− uh) · ∇ω〉K +
∑
e∈∂K

〈(u− uh) · nωε−h 〉e.
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The second term on the right side of (2.7) is a complete derivative and hence can be integrated
to give a pure boundary term

〈εuh · ∇ε〉K = 1

2

∑
e∈∂K

〈uh · n(ε−)2〉e

Plugging all these into (2.6) withv = εh, and collecting boundary terms, we obtain

〈∂tεhεh〉K + 〈εh(u− uh) · ∇ω〉K + 〈εuh · ∇(ω − Pω)〉K +
∑
e∈∂K

Ie = 0

where the boundary terms

Ie = −〈(u− uh) · nωε−h 〉e− 1
2〈(uh · n(ε−)2〉e+ 〈(u · nω − uh · nω̂h)ε

−
h 〉e

= 〈uh · n
(
ε̂ε−h − 1

2(ε
−)2
)〉

e

= 〈uh · n
(
ε̂ε− − 1

2(ε
−)2
)〉

e
− 〈uh · nε̂(ω − (Pω)−)〉e.

Using the stability analysis in (2.2), we are left with

d

dt

1

2
‖εh‖2 ≤

∑
K

{
−〈εh(u− uh) · ∇ω〉K − 〈εuh · ∇(ω − Pω)〉K

+
∑
e∈∂K

〈uh · nε̂(ω − (Pω)−)〉e
}
. (2.8)

Assuming for the moment

‖uh‖∞ ≤ C, (2.9)

we can first estimate the boundary term, using the fact that the mesh is quasi-uniform:∑
K

∑
e∈∂K

〈uh · nε̂(ω − (Pω)−)〉e ≤
∑

K

∑
e∈∂K

C‖[ Pω]‖e‖ε̂‖e

≤ ‖ε‖2+ C

h

∑
K

∑
e∈∂K

‖[ Pω]‖2e.

Using the above inequality together with (2.5) and (2.8), we now obtain (with the regularity
assumptionω ∈ Hk+1)

d

dt
‖εh‖2 ≤ C

(
‖εh‖2+ ‖∇(ψ −5ψ)‖2+ ‖ω − Pω‖2H1 + 1

h

∑
K

∑
e∈∂K

‖[ Pω]‖2e
)
.

Here we understand the norms as a summation of the same norm on eachK . Using the
standard interpolation theory [6], we obtain

d

dt
‖εh‖2 ≤ C‖εh‖2+ Ch2k,

which yields

‖εh‖ ≤ Chk.
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Together with (2.5), we have

‖u− uh‖ + ‖ω − ωh‖ ≤ Chk. (2.10)

Using an inverse inequality, we have

‖u− uh‖∞ ≤ Chk−1;

with the assumptionk > 1, this justifies thea priori assumption (2.9).
The estimate (2.10) is optimal in terms of the spaceWk

0,h, which is important since the
main cost for the scheme is in the Poisson solver inWk

0,h. The vorticity estimate in (2.10)
is, however, suboptimal with respect to the spaceVk

h . If we useWk+1
0,h instead for the stream

function and use the upwind flux (1.10), then a more detailed analysis will produce an
orderO(hk+1/2) for the error inω; see [13, 21] for details. However, we do not recommend
this choice in practice, as the increase of half-order accuracy is obtained with the price
of one degree higher polynomials in the most expensive part of the algorithm, namely
the Poisson solver. In our numerical experiments in Section 5, we observe that close to
(k+ 1)th order of accuracy is generally achieved whenkth degree polynomials are used in
both the discontinuous space forω and the continuous space forψ , both for uniform and
for non-uniform meshes.

3. THE SCHEME FOR THE NAVIER–STOKES EQUATIONS

For the Navier–Stokes equations (1.3), there are two additional ingredients that require
our attention:

1. The viscous terms cannot be directly implemented in the discontinuous spaceVk
h .

Instead, the stress tensor is first obtained locally using the same discontinuous Galerkin
framework.

2. Vorticity boundary values are not known physically. We obtain vorticity boundary
conditions locally from the stream function using the kinematic relation in (1.3).

We use the same finite element spacesVk
h andWk

0,h defined in (1.5) for the vorticity and
stream function, respectively. Denote byVk

0,h the subspace ofVk
h with zero value at the

boundary. LetWk
h be the finite element space extended fromWk

0,h with general non-zero
values at the boundary. The numerical method now becomes

〈∂tωhv〉K − 〈ωhuh · ∇v〉K +
∑
e∈∂K

〈uh · nω̂hv
−〉e

=−〈σh · ∇v〉K +
∑
e∈∂K

〈 σ̃h · nv−〉e, ∀v ∈ Vk
0,h. (3.1)

Notice that the test function is now inVk
0,h, (see [23]), and the stress tensorσh ∈ (Vk

h )
2 is

obtained from the vorticityωh by the same discontinuous Galerkin framework:

Re〈σhv〉K = −〈ωh∇ · v〉K +
∑
e∈∂K

〈ω̃hv− · n〉e, ∀v ∈ (Vk
h

)2
. (3.2)
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We remark that (3.2) gives a local solution for the stress tensorσh, given the vorticityωh;
neither a global inversion nor a global storage is needed. The fluxesσ̃h andω̃h can be chosen
as central averages

σ̃h = 1
2(σ
−
h + σ+h ), ω̃h = 1

2(ω
−
h + ω+h ) (3.3)

or better still, as alternate one-sided fluxes, namely, at each edgee with an arbitrarily fixed
orientation, one of̃σh andω̃h is taken as the left value and the other taken as the right value.
It can be verified that, fork= 0 and a rectangular triangulation, the central fluxes (3.3)
produce a wide stencil central approximation to the second derivatives (ωi−2, ωi andωi+2

are used for approximatingωxx), while the alternate one-sided fluxes produce a compact
stencil central approximation (ωi−1, ωi andωi+1 are used for approximatingωxx). Also,
numerical and theoretical evidence show that the alternate one-sided fluxes produce more
accurate results [13]. In this paper we use only the alternate one-sided fluxes for the viscous
terms.

For periodic boundary conditions, the scheme is now well defined. For the non-periodic
case, we advocate using the approach in [23]. Although the basic idea in computing the
vorticity boundary condition is similar to that of the standard finite element method in [23],
there is some difference due to the fact that the approximation space for the vorticity in the
discontinuous Galerkin method is large than that in a continuous finite element method. We
outline the detailed steps here for completeness.

Since (3.1) is treated explicitly and the local discontinuous Galerkin method is used,ωn+1
h

in the interior elements can be directly computed. However, for the boundary elements, we
need to computeωn+1

h in three steps.
First, for all test functionsv ∈ Vk

0,h, we can compute the inner product〈ωn+1
h v〉K directly

from (3.1) thanks to the explicit time stepping.
Second, sinceWk

0,h is a subspace ofVk
0,h, from (3.1), the inner products,〈ωn+1

h v〉K for all
v ∈ Wk

0,h has already been computed. This is sufficient for obtaining the stream function
ψn+1

h from

−〈∇ψn+1
h · ∇ϕ〉 = 〈ωn+1

h ϕ
〉
, ∀ϕ ∈ Wk

0,h, (3.4)

with the velocity field obtained from the stream function by

un+1
h = ∇⊥ψn+1

h . (3.5)

Finally, we are able to compute the vorticityωn+1
h at boundary elements directly from

〈
ωn+1

h ϕ
〉 = −〈∇ψn+1

h · ∇ϕ〉
for all the test functionsϕ ∈ Vk

h thanks to the fact thatψn+1
h has already been computed.

For problems with periodic boundary conditions, the formulation above admits the fol-
lowing stability results,

d

dt
‖ωh‖2+ 2‖σh‖ ≤ 0, (3.6)
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which in turn implies stability for the velocity field (2.3). The proof is similar to the Euler
case; see [13] for the details. With the vorticity boundary condition mentioned above, we
are unable to obtain a stability estimate. However, this type of vorticity boundary treatment
for conventional finite difference and finite elements is stable; see [15, 23]. Without such
a stability estimate, there is an issue about the uniqueness of the solution to the method of
lines discretization with the boundary condition treatment mentioned above. However, the
full discretized version works well in the numerical experiments; see Example 1 of the next
section.

4. ACCURACY CHECK AND NUMERICAL EXAMPLES

We implement our method on triangulations based on rectangles. When aPk/Qk result is
referred to it is obtained withPk elements for the vorticityω andQk elements for the stream
functionψ , whereQk refers to the space of tensor products of 1D polynomials of degree
up tok. We remark that some of the theoretical results in previous sections do not apply for
these choices of mesh and spaces. For example,Qk elements should also be used for the
vorticity ω for the exact energy conservation (2.4) to hold; however, to save cost we usePk

elements for the vorticityω instead. Energy stability (2.3) and enstrophy stability (2.2) still
hold in this case. We have used both the upwind flux (1.10) and the (global) Lax–Friedrichs
flux (1.11) for the calculations; however, we will only show the results obtained with the
Lax–Friedrichs flux to save space. The time discretization is by the third-order positive
Runge–Kutta methods in [27].

EXAMPLE 1. This example is used to check the accuracy of our schemes, both for the
Euler equations (1.1) and for the Navier–Stokes equations (1.3) with Re= 100, for both
the periodic and the Dirichlet boundary conditions, and with both a uniform mesh and a
non-uniform mesh. The Dirichlet boundary conditions use the data taken from the exact
solution. The non-uniform mesh is obtained by alternating between 0.91x and 1.11x for
the mesh sizes in thex direction; similarly for the mesh sizes in they direction. The initial
condition is taken as

ω(x, y, 0) = −2 sin(x) sin(y), (4.1)

which was used in [5]. The exact solution for this case is known:

ω(x, y, t) = −2 sin(x) sin(y)e−2t/Re. (4.2)

We use the domain [0, 2π ]× [0, 2π ] for the periodic case and [0, π ]× [0, π ] for the Dirich-
let case and compute the errors att = 2 for the periodic case and att = 1 for the Dirichlet
case. We list in Tables 5.1 (uniform mesh) and 5.2 (non-uniform mesh) theL1 and L∞
errors, att = 2, measured at the center of the cells, for the periodic boundary conditions.
Tables 5.3 (uniform mesh) and 5.4 (non-uniform mesh) contain the results with the Dirichlet
boundary conditions att = 1. We remark that, because of the difference in the sizes of the
domains of the periodic and Dirichlet cases, the errors with the same number of cells are of
different values, but the orders of accuracy are similar. We have also computed the errors of
the relevant derivatives at the centers of the cells, which help in giving us trulyL∞ errors
throughout the domain. We will not show them to save space. To get an idea about the effect
of the viscous terms on the time step restriction and CPU time, we point out that forP3/Q3
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TABLE 5.1

Accuracy Test, Uniform Meshes, Periodic Boundary Conditions

Euler Navier–Stokes with Re= 100

Mesh L1 error order L∞ error order L1 error order L∞ error order

P1/Q1

162 7.77E-03 — 1.80E-02 — 7.65E-03 — 1.82E-02 —
322 1.01E-03 2.94 2.46E-03 2.87 1.03E-03 2.89 2.55E-03 2.83
642 1.28E-04 2.99 3.14E-04 2.97 1.36E-04 2.92 3.44E-04 2.89

1282 1.60E-05 3.00 3.94E-05 2.99 1.80E-05 2.92 4.63E-05 2.89

P2/Q2

162 6.26E-04 — 1.58E-03 — 2.06E-04 — 5.85E-04 —
322 5.52E-05 3.50 2.75E-04 2.52 1.37E-05 3.90 3.24E-05 4.17
642 4.82E-06 3.52 3.81E-05 2.85 2.40E-06 2.51 4.10E-06 2.98

1282 4.04E-07 3.58 4.96E-06 2.94 4.05E-07 2.57 6.44E-07 2.67

P3/Q3

162 9.74E-05 — 2.31E-04 — 9.68E-05 — 2.33E-04 —
322 6.81E-06 3.84 1.67E-05 3.79 6.22E-06 3.96 1.50E-05 3.96
642 4.36E-07 3.96 1.05E-06 3.99 3.82E-07 4.02 9.25E-07 4.02

1282 2.71E-08 4.01 6.59E-08 3.99 2.33E-08 4.04 5.70E-08 4.02

with a 162 mesh, the Navier–Stokes code takes about twice as many time steps and about
three times as much CPU time as the Euler code to reach the same physical time. We have
also made several runs where the periodic and non-periodic cases have the same physical
domain, mesh, and physical time. The errors are very close, indicating that the boundary
effect on accuracy is small.

TABLE 5.2

Accuracy Test, Non-uniform Meshes, Periodic Boundary Conditions

Euler Navier–Stokes with Re= 100

Mesh L1 error order L∞ error order L1 error order L∞ error order

P1/Q1

162 8.49E-03 — 2.85E-02 — 7.77E-03 — 2.80E-02 —
322 1.44E-03 2.56 5.56E-03 2.36 1.16E-03 2.75 5.45E-03 2.36
642 2.81E-04 2.36 1.13E-03 2.29 2.17E-04 2.42 1.03E-03 2.40

1282 5.90E-05 2.25 2.59E-04 2.13 4.13E-05 2.40 1.94E-04 2.41

P2/Q2

162 7.88E-04 — 2.77E-03 — 3.37E-04 — 1.18E-03 —
322 7.82E-05 3.33 4.11E-04 2.75 1.78E-05 4.24 6.40E-05 4.21
642 7.66E-06 3.35 5.15E-05 3.00 2.63E-06 2.76 6.97E-06 3.20

1282 7.43E-07 3.37 6.11E-06 3.07 4.34E-07 2.60 1.00E-06 2.80

P3/Q3

162 1.03E-04 — 3.26E-04 — 1.01E-04 — 3.24E-04 —
322 7.18E-06 3.84 2.60E-05 3.65 6.52E-06 3.96 2.14E-05 3.92
642 4.60E-07 3.96 1.77E-06 3.88 4.01E-07 4.02 1.28E-06 4.06

1282 2.86E-08 4.01 1.09E-07 4.02 2.44E-08 4.03 7.70E-08 4.06
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TABLE 5.3

Accuracy Test, Uniform Meshes, Dirichlet Boundary Conditions

Euler Navier–Stokes with Re= 100

Mesh L1 error order L∞ error order L1 error order L∞ error order

P1/Q1

162 5.92E-04 — 1.23E-03 — 5.75E-04 — 1.32E-03 —
322 8.19E-05 2.85 1.92E-04 2.68 7.52E-05 2.94 1.78E-04 2.89
642 1.06E-05 2.94 5.35E-05 1.84 9.63E-06 2.96 3.76E-05 2.25

1282 1.35E-06 2.98 1.42E-05 1.92 1.25E-06 2.94 8.06E-06 2.22

P2/Q2

162 4.76E-05 — 2.57E-04 — 1.51E-05 — 4.05E-05 —
322 4.28E-06 3.47 3.57E-05 2.85 2.49E-06 2.60 6.09E-06 2.73
642 3.74E-07 3.52 4.65E-06 2.94 4.11E-07 2.60 9.42E-07 2.69

1282 3.17E-08 3.56 5.92E-07 2.97 6.16E-08 2.74 1.34E-07 2.81

P3/Q3

162 6.80E-06 — 1.58E-05 — 6.34E-06 — 1.53E-05 —
322 4.22E-07 4.01 1.06E-06 3.90 3.90E-07 4.02 9.45E-07 4.02
642 2.66E-08 3.99 6.90E-08 3.94 2.38E-08 4.04 5.81E-08 4.02

1282 1.66E-09 4.00 4.25E-09 4.02 1.46E-09 4.03 3.59E-09 4.02

We can clearly see from these tables that close to(k+1)th order of accuracy is generally
achieved whenkth degree polynomials are used in both the discontinuous space forω and
for the Poisson solver, both for the uniform and for the non-uniform meshes.

EXAMPLE 2. The double shear layer problem taken from [1]. We solve the Euler equation
(1.1) in the domain [0, 2π ]× [0, 2π ] with a periodic boundary condition and an initial

TABLE 5.4

Accuracy Test, Non-uniform Meshes, Dirichlet Boundary Conditions

Euler Navier–Stokes with Re= 100

Mesh L1 error order L∞ error order L1 error order L∞ error order

P1/Q1

162 1.12E-03 — 4.35E-03 — 9.93E-04 — 4.25E-03 —
322 2.44E-04 2.20 9.79E-04 2.15 1.95E-04 2.35 8.74E-04 2.28
642 5.61E-05 2.12 2.39E-04 2.04 3.90E-05 2.33 1.75E-04 2.32

1282 1.36E-05 2.04 6.29E-05 1.92 7.76E-06 2.33 3.54E-05 2.31

P2/Q2

162 7.54E-05 — 3.31E-04 — 1.98E-05 — 6.63E-05 —
322 8.15E-06 3.21 4.33E-05 2.93 2.61E-06 2.93 7.03E-06 3.24
642 8.46E-07 3.27 5.35E-06 3.02 4.35E-07 2.59 1.02E-06 2.79

1282 8.31E-08 3.35 6.56E-07 3.03 6.52E-08 2.74 1.49E-07 2.78

P3/Q3

162 7.17E-06 — 2.49E-05 — 6.65E-06 — 2.18E-05 —
322 4.46E-07 4.01 1.66E-06 3.91 4.09E-07 4.02 1.31E-06 4.06
642 2.80E-08 3.99 1.04E-07 3.99 2.50E-08 4.03 7.86E-08 4.06

1282 1.75E-09 4.00 6.89E-09 3.92 1.53E-09 4.02 4.77E-09 4.04
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condition

ω(x, y, 0) =
{
δ cos(x)− 1

ρ
sech2((y− π/2)/ρ) y ≤ π

δ cos(x)+ 1
ρ
sech2((3π/2− y)/ρ) y > π

, (4.3)

where we takeρ=π/15 andδ= 0.05.

The solution quickly develops into roll-ups with smaller and smaller scales, so on any
fixed grid the full resolution is lost eventually. We use fixed uniform meshes of 64× 64
and 128× 128 rectangles and perform the calculation up tot = 8. We plot the time his-
tory of the total energy (square of theL2 norm of velocityu) and the total enstrophy
(square of theL2 norm of vorticityω) in Fig. 5.1, as well as contours of the vorticityω at
t = 6 in Fig. 5.2 and att = 8 in Fig. 5.3 to show the resolution. We can see from Fig. 5.1
that the numerical dissipation decreases roughly in the order ofP1/Q1-642, P1/Q1-1282,
P2/Q2-642, P3/Q3-642, P2/Q2-1282, and P3/Q3-1282. We remark that due to the dis-
sipation from Runge–Kutta time discretization and the choice of finite element spaces,
the total energy in Fig. 5.1, left, decays rather than stays at a constant as proved in (2.4).
The decay rate of total energy or total enstrophy in Fig. 5.1 is an indication of the ac-
tual resolution of the schemes for the given mesh. The higher-order methods have better
resolutions and in general the resolution is quite good judging from the contours. We re-
mark that when the numerical viscosity becomes too small with higher-order methods,
since the schemes are linear, numerical oscillations are unavoidable when resolution to
sharp fronts is lost, leading to instability. This is common for all linear schemes. How-
ever, the discontinuous Galerkin method we use here is able to get stable solutions for
much sharper fronts with the same mesh than central type finite difference or finite element
methods.

FIG. 5.1. The time history of energy (square of theL2 norm of the velocityu) and total enstrophy (square of
the L2 norm of vorticityω). P1/Q1 with 642 mesh in solid line,P1/Q1 with 1282 mesh in dashed line,P2/Q2

with 642 mesh in dash–dot line,P2/Q2 with 1282 mesh in dotted line,P3/Q3 with 642 mesh in long dashed line,
andP3/Q3 with 1282 mesh in dash–dot–dot line.
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FIG. 5.2. Contour of vorticityω at t = 6. Thirty equally spaced contour lines betweenω=−4.9 andω= 4.9.
Left: results with 642 mesh; right: results with 1282 mesh. Top:P1/Q1; middle: P2/Q2, bottom:P3/Q3.
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FIG. 5.3. Contour of vorticityω at t = 8. Thirty equally spaced contour lines betweenω=−4.9 andω= 4.9.
Left: results with 642 mesh; right: results with 1282 mesh. Top:P1/Q1; middle: P2/Q2, bottom:P3/Q3.
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FIG. 5.4. Contour of vorticityω at t = 8. Thirty equally spaced contour lines betweenω=−15 andω = 15.
Left: results of the thin shear layer,ρ=π/50, Re= 70,000/2π , P2/Q2 method with a 2562 mesh; right: results
of the ultra thin shear layer,ρ=π/100, Re= 20,000/2π , P1/Q1 method with a 5122 mesh.

In [2], shear layers are distinguished between “thick” and “thin” ones, with the latter
producing spurious vortices. The result above corresponds to the “thick” shear layer in
[2]. We show in Fig. 5.4, left, a “thin” shear layer case as defined in [2], corresponding to
ρ=π/50 with a Reynolds number Re= 70,000/2π , simulated with a uniform rectangular
mesh of 256× 256 cells withP2/Q2 method att = 8. Notice that this is at a much higher
Reynolds number than that used in [2], where the Reynolds number is Re= 2000/2π
and a second-order Godunov upwind projection method with 256× 256 points produces
spurious non-physical vortices. We also compute a ultrathin shear layer withρ=π/100
with Reynolds number Re= 20,000/2π . The simulation result with a uniform rectangular
mesh of 512× 512 cells withP1/Q1 method att = 8 is shown in Fig. 5.4, right. More
extensive numerical resolution study for this example can be found in [24], where we
explore thoroughly the resolution both for the “thick” and for the “thin” shear layers. In
[24] we also plot the time history for the energy and enstrophy during a mesh refinement
to show that the physical viscosity is dominating the numerics at such high Reynolds
numbers, according to the decay of energy and enstrophy. This indicates that the built-in
numerical viscosity of the methods is very small. We refer the reader to [24] for details. For
a comparison with nonlinear ENO schemes, we refer to [16].

EXAMPLE 3. The vortex patch problem. We solve the Euler equation (1.1) in [0, 2π ]×
[0, 2π ] with the initial condition

ω(x, y, 0) =


−1, π

2 ≤ x ≤ 3π
2 ,

π
4 ≤ y ≤ 3π

4 ;
1, π

2 ≤ x ≤ 3π
2 ,

5π
4 ≤ y ≤ 7π

4 ;
0, otherwise

(4.4)

and periodic boundary conditions. The contour plots of vorticityω, with 30 equally spaced
contour lines betweenω=−1.1 andω= 1.1, are given in Fig. 5.5 fort = 5 and in Fig. 5.6
for t = 10. We can see that the scheme gives stable results for all runs, and higher-order
schemes give better resolutions for vorticity.
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FIG. 5.5. Contour of vorticityω at t = 5. Thirty equally spaced contour lines betweenω=−1.1 andω= 1.1.
Left: results with 642 mesh; right: results with 1282 mesh. Top:P1/Q1; middle: P2/Q2, bottom:P3/Q3.
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FIG. 5.6. Contour of vorticityω att = 10. Thirty equally spaced contour lines betweenω=−1.1 andω= 1.1.
Left: results with 642 mesh; right: results with 1282 mesh. Top:P1/Q1; middle: P2/Q2, bottom:P3/Q3.
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5. CONCLUDING REMARKS

We have developed a high order discontinuous Galerkin method for the two-dimensional
incompressible Euler and Navier–Stokes equations in the vorticity stream-function formu-
lation, coupled with a standard continuous finite element solution of the Poisson equation
for the stream function. A natural matching between the two finite element spaces allows
us to obtain total energy conservation and total enstrophy stability. Numerical examples are
shown to demonstrate the accuracy and resolution of the methods.
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